PaperAbstract. The computing systems used by LHC experiments has historically consisted of the federation of hundreds to thousands of distributed resources, ranging from small to mid-size re-source. In spite of the impressive scale of the existing distributed computing solutions, the federation of small to mid-size resources will be insufficient to meet projected future demands. This paper is a case study of how the ATLAS experiment has embraced Titan - a DOE leadership facility in conjunction with traditional distributed high-throughput computing to reach sustained production scales of approximately 52M core-hours a years. The three main contributions of this paper are: (i) a critical evaluation of design and operational considerations to support the sustained, scalable and production usage of Titan; (ii) a preliminary characterization of a next generation executor for PanDA to support new workloads and advanced execution modes; and (iii) early lessons for how current and future experimental and observational systems can be integrated with production supercomputers and other platforms in a general and extensible manner.